PandasDBFSDatasource
class great_expectations.datasource.fluent.PandasDBFSDatasource(*, type: Literal['pandas_dbfs'] = 'pandas_dbfs', name: str, id: Optional[uuid.UUID] = None, assets: List[great_expectations.datasource.fluent.data_asset.path.file_asset.FileDataAsset] = [], base_directory: pathlib.Path, data_context_root_directory: Optional[pathlib.Path] = None)#
Pandas based Datasource for DataBricks File System (DBFS) based data assets.
- add_csv_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7f104bf27020> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7f104bf270e0> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7f104bf272f0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7f104bf275c0> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7f104bf27800> = None, sep: typing.Optional[str] = None, delimiter: typing.Optional[str] = None, header: Union[int, Sequence[int], None, Literal['infer']] = 'infer', names: Union[Sequence[str], None] = None, index_col: Union[IndexLabel, Literal[False], None] = None, usecols: typing.Optional[typing.Union[int, str, typing.Sequence[int]]] = None, dtype: typing.Optional[dict] = None, engine: Union[CSVEngine, None] = None, true_values: typing.Optional[typing.List] = None, false_values: typing.Optional[typing.List] = None, skipinitialspace: bool = False, skiprows: typing.Optional[typing.Union[typing.Sequence[int], int]] = None, skipfooter: int = 0, nrows: typing.Optional[int] = None, na_values: Union[Sequence[str], None] = None, keep_default_na: bool = True, na_filter: bool = True, verbose: bool = False, skip_blank_lines: bool = True, parse_dates: Union[bool, Sequence[str], None] = None, infer_datetime_format: bool = None, keep_date_col: bool = False, date_format: typing.Optional[str] = None, dayfirst: bool = False, cache_dates: bool = True, iterator: bool = False, chunksize: typing.Optional[int] = None, compression: CompressionOptions = 'infer', thousands: typing.Optional[str] = None, decimal: str = '.', lineterminator: typing.Optional[str] = None, quotechar: str = '"', quoting: int = 0, doublequote: bool = True, escapechar: typing.Optional[str] = None, comment: typing.Optional[str] = None, encoding: typing.Optional[str] = None, encoding_errors: typing.Optional[str] = 'strict', dialect: typing.Optional[str] = None, on_bad_lines: str = 'error', delim_whitespace: bool = False, low_memory: bool = True, memory_map: bool = False, float_precision: Union[Literal['high', 'legacy'], None] = None, storage_options: Union[StorageOptions, None] = None, dtype_backend: DtypeBackend = None, **extra_data: typing.Any)pydantic.BaseModel #
Add a csv asset to the datasource.
- add_excel_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7f104bf44350> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7f104bf44320> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7f104bf44920> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7f104bf44290> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7f104bf45310> = None, sheet_name: typing.Optional[typing.Union[str, int, typing.List[typing.Union[int, str]]]] = 0, header: Union[int, Sequence[int], None] = 0, names: typing.Optional[typing.List[str]] = None, index_col: Union[int, Sequence[int], None] = None, usecols: typing.Optional[typing.Union[int, str, typing.Sequence[int]]] = None, dtype: typing.Optional[dict] = None, engine: Union[Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb'], None] = None, true_values: Union[Iterable[str], None] = None, false_values: Union[Iterable[str], None] = None, skiprows: typing.Optional[typing.Union[typing.Sequence[int], int]] = None, nrows: typing.Optional[int] = None, na_values: typing.Any = None, keep_default_na: bool = True, na_filter: bool = True, verbose: bool = False, parse_dates: typing.Union[typing.List, typing.Dict, bool] = False, date_format: typing.Optional[str] = None, thousands: typing.Optional[str] = None, decimal: str = '.', comment: typing.Optional[str] = None, skipfooter: int = 0, storage_options: Union[StorageOptions, None] = None, dtype_backend: DtypeBackend = None, engine_kwargs: typing.Optional[typing.Dict] = None, **extra_data: typing.Any)pydantic.BaseModel #
Add an excel asset to the datasource.
- add_feather_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7f104bf46270> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7f104bf46870> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7f104bf469c0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7f104bf46b70> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7f104bf46c30> = None, columns: Union[Sequence[str], None] = None, use_threads: bool = True, storage_options: Union[StorageOptions, None] = None, dtype_backend: DtypeBackend = None, **extra_data: typing.Any)pydantic.BaseModel #
Add a feather asset to the datasource.
- add_fwf_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7f104bf473b0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7f104bf47470> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7f104bf475c0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7f104bf47770> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7f104bf47830> = None, colspecs: Union[Sequence[Tuple[int, int]], str, None] = 'infer', widths: Union[Sequence[int], None] = None, infer_nrows: int = 100, dtype_backend: DtypeBackend = None, kwargs: typing.Optional[dict] = None, **extra_data: typing.Any)